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MOMENT Concept 



MOMENT Concept 

• MOMENT: A muon-decay medium baseline neutrino 
beam facility 

• MOMENT was launched in 2013 as the third phase of 
neutrino experiments in China 
– Neutrino experiments at Daya Bay continues data-taking  

– Jiangmen (JUNO, or DYB-II) has started civil construction 

• A dedicated machine to measure CP phase, if other 
experiments (such as LBNF/DUNE, HyperK) will have not 
completed the task 

• As a driving force to attract researchers from China as 
well international collaborators to work on neutrino 
experiments based on accelerators 



• Using a CW proton linac as the proton driver 

–  Based on the China-ADS linac 

–  15 MW in beam power 

• Fluidized target in high-field SC solenoid 

– Granular tungsten or mercury jet 

– Collection of pions and muons of both charges 

• Neutrino beam from pure + or - decays 
– Medium energy (250 MeV) for medium-baseline experiment 

– From long decay channel instead of decay rings for NF and 
nuSTORM 

A concept to exploit high-flux medium-
energy muon-decay neutrinos 



 Decay channel - a 0-free neutrino beam line 

• Neutrino energy: ~ 300 MeV  baseline = 150 km 
• Although we loose some statistics due to lower cross section, 

but we gain by being background free from 0 



Schematic for MOMENT 

Detector 

 

Type to be 
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Proton driver technology synergy 
with other projects 



MOMENT proton driver:  
a CW superconducting linac 

• A CW proton SC linac can provide the highest beam 
power, and selected as the proton driver for MOMENT 

• China-ADS project and MYRRHA are developing such a 
CW proton linac.  PIP-II (PIXE) is developing CW RF linac 
but with lower beam duty.   

• If China-ADS program goes well, the linac could be also 
used as the proton driver for MOMENT in 2030’s. 

– Proton beam:  1.5 GeV, 10 mA (15 MW) 

– Alternate: extending energy to 2.0 GeV 



Design scheme for the C-ADS linac 
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R&D efforts on ADS linac at IHEP and IMP 
– IMP completed the commissioning test of 

a 5 MeV front-end (10 mA, 162.5 MHz, 
2.1 MeV RFQ in CW mode, a cryomodule 
HWR in pulsed mode)  

– IHEP is testing another scheme (3.2 MeV 
RFQ, a cryomodule Spoke, 10 mA, 325 
MHz) 

– Prototyping on both low- and medium- 
cavities 



• High power proton accelerators are mandatory to 
neutrino beam facilities 

• MOMENT proton driver shares technologies with the 
other proposed neutrino beams, such as Neutrino 
Factory, Project-X (now PIP-II) and ESSnuSB 

– Development of superconducting cavities (low-, medium-, 
high-) and the high duty factor  RF equipment 

– Beam loss control in high power proton linacs 

– Interface with target station 

Project-X (Upper) 
ESSnuSB (Lower) 



Comparison of proton drivers 
Beam 
power 
(MW) 

Linac 
Energy 
(GeV) 

RF duty 
factor 

(%) 

Peak 
current 

(mA) 

SC 
cavity 
types 

MOMENT 15 1.5 (~2.5) 100 10 5 

Neutrino Factory 4  5 (SPL) 4 20 2 

Project-X (PIP-II) 3 (0.2) 3 (0.8) 100 (10) 5 (2) 6(5) 

ESSnuSB 5 2 4 62.5 3 

(Project-X has also a pulsed linac section of 3-8 GeV) 

Neutrino Factory (SPL) 



Target technology synergy with 
other projects 



MOMENT Target Station 
• Baseline design: Mercury jet target (similar to NF design, 

MERIT) and high-field superconducting solenoids 
– Higher beam power: heat load, radioactivity 
– On the other hand, easier to some extent due to CW proton beam 

(no shock-wave problem) 
• More interests in developing fluidized granular target in 

collaborating with C-ADS target team, and also waiting for 
study result with fluidized tungsten-powder target by NF 
collaboration 

Trying to work out a feasible 
concept based on granular target 



High-field superconducting solenoids 
• Very large apertures due to collection of secondary 

/tertiary beams and space for inner shielding 
– Based on Nb3Sn superconducting conductors, CICC (Cable-in-

Conduit Conductor) coil (ITER) 

– HTS coils are also under consideration 

– High-field magnet R&D efforts at IHEP (incorporated with SPPC) 



• Different field levels have been studied: 7/10/14 T 

– Evident advantage on pion collection with higher field  

• Relatively short tapering section: <5 m 

• High radiation dose level is considered not a big issue 
here (compared with ITER case)(both Nb3Sn and HTS 
conductors are radiation resistant, problems are with 
electrical insulation)  

(Vassilopoulos’ talk) 



Pion production and collection 

• Pion production rate: 0.10 pion/proton (1.5 GeV, 300 mm Hg) 

• Collection efficiencies of forward/total pions: 82% / 58%  (@14 T) 

 

• Distributions in (X-X’)/(Y-Y’) at 
end of pion decay channel 
(from upper down: 7/10/14T) 

• Higher field increases the core 
density significantly (favorable) 



Spent protons 

• There are two parts in the spent protons:  

– Scattered protons  from the side of the thin mercury jet and the 
pass-thru protons from the jet which have higher energy  (4.7 
MW with 30 cm target) 

– From nuclear reactions, lower energy (1.8 MW with 30 cm 
target) 

• We must find ways to deal with the spent protons, either 
collimated or separating from the / beam or 

transporting to the final dump.  
– Very difficult due to high beam power and large moment range 

and emittance 
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• High power target station is a technically challenging 
issue, and even more challenging when high magnetic-
field is required. 
– Huge heat deposit in target (cooling, shocking wave) 

– Very high irradiation level (protection, material lifetime, 
electrical insulation) 

– Very high electromagnetic force, space limitation 

– Interface with primary and secondary beamlines  

• Conventionally, carbon target inside a magnetic horn is 
used (very short pulse, up to 2 MW, low repetition rate) 

• New type of neutrino beams (NF and MOMENT) uses 
high-repetition or CW proton beams, and higher power 
– Mercury jet target (now preferable fluidized tungsten target) 

– Superconducting solenoids for  capture and focusing 

– Extremely challenging 



Synergy efforts 
• Precise simulations on  production yield, material and proton 

energy 
– MARS, GEANT4, MCNP, FLUKA: not consistent 

• Study on magnetic field taper 

• Design and R&D on fluidized tungsten target (NF and 
MOMENT) 

• Design and R&D on high-field superconducting solenoids (NF 
and MOMENT) 

• Study on cooling and shielding methods in MW targets 

• Interface issues with primary and secondary beamlines 
(windows, shielding, dump) 

• Spent protons 



Comparison of target stations 
Beam power 

(MW) 
Proton 

energy (GeV) 
Target Magnetic 

field 

MOMENT 15 1.5 (~2.5) Granular W 
or Hg jet 

SC solenoids 

Neutrino Factory 4  5 (SPL) Fluidized W 
or Hg jet 

SC solenoids 
+ RT insert 

LBNF 2 120 Carbon Horns 

ESSnuSB 5 2 4 * Carbon Horns 

ESSnuSB 
Target 
Station 

NF Target 
Station 

LBNF 
Target 
Station 



Neutrino beamline technology 
synergy with other projects 



MOMENT Secondary beamline 

• Transporting both pions and muons  

• A straight section in SC solenoids of about 100 m to 
match the SC solenoids at the target, and for the 
pions to decay into muons 
– Adiabatic field transition (tapering section )  

– Extraction of scattered protons 

– Very large emittance and momentum spread 

– Longer section for energetic pions to decay 

• Similar beam rigidity assures that pions and muons 
can be transported in the same focusing channel 
– Momentum and emittance of pions most preserved in 

muons   



More about the pion decay channel 

• SC solenoids form FOFO lattice 
(stop-band at certain energy) 

• Very large acceptance for channels 

• About 0.0052 +/proton for about 
50 mm-rad  at entrance of muon 
decay channel 

 

  muon/proton Portion（%） 

No limit on emittance 9.48E-03 100 

Emittance: 100 πmm-rad 8.04E-03 85 

Emittance:   80 πmm-rad 7.31E-03 77 

Emittance:   50 πmm-rad 5.22E-03 55 

Emittance limit in both (X-X’) and (Y-Y’)  

7 T 



• A selection section to select +/+ from -/-, as either 
+ beam or - beam is used for producing the required 
neutrinos    
– Reverse the fields when changing from + to -  

– Also for removing very energetic pions who still survive 

– Very difficult due to extremely large beam emittance (T/L) 

• Two schemes: based on 3 SC dipoles with strong gradient 
(or FFAG), and bent SC solenoids 

Charge selection 



Muon transport and decay 
- Muon decay channel 

• A long decay channel of about 600 m is designed for 
production of neutrinos 
– About 35% (centered momentum: ~300 MeV/c) 

• Important to have smaller divergent angle  
– Neutrino energy spectrum at detector related to the angle 

– Modest beam emittance and large aperture 

– Adiabatic matching from 3.7 T in the bending section to 
1.0 T in the decay section 

Aperture/Field Acceptance  (mm-rad) 
X: in mm; X’: in mrad 

600, 3.7 T 100 (x: 280, x’: 357) 

800, 1.0 T 65 (x: 380, x’: 171) 



Estimate of neutrino flux 
• POT (5000 h): 1.125  1024 proton/year 

• Muon yield: 1.62  10-2  /proton 

• Total neutrino yield: 4.8  10-3  /proton (in pair) 

                                         5.4  1021  /year (in pair) 

           (NF: 1.1  1021  /year ) 

• Neutrino flux at detector: dependent on the distance 

           4.7  1011  /m2/year  (@150 km) 

 



Challenges and synergy efforts in 
neutrino beamlines 

• Charge selection of +/- and +/- [NF] 

– Very large emittance/momentum range 

• Dumping both protons and secondary particles [All] 

– Mixed beam, high power 

• Manipulation in phase space [NF, nuSTORM] 

– Adiabatic conversion of transverse momentum into 
longitudinal 

– Bunching rotation 

– Emittance cooling 



Detector technology synergy with 
other projects 



• Suitable detectors for MOMENT are still under study 
– Flavor sensitive: e/ identification  

          Water Cherenkov, liquid Ar, liquid scin.   
– Charge sensitive:  and anti- 
    Magnetized, liquid scin., Gd-doped water (IBD) 
– NC/CC sensitive: NC background rejection 
– Very large target mass required 

• Detector synergy 
– Magnetized detector, e.g. MIND by NF and SuperBIND by nuSTORM 
– Water Cherenkov detector (or doped),  MEMPHIS by ESSnuSB/LBNO 

and HyperK detector 
– Liquid scintillator detector such as JUNO 

 
 



Summary 

• As an interesting study, MOMENT attracts Chinese 
researchers to collaborate on neutrino beams 

– on MOMENT itself 

– on other international projects 

• MOMENT shares many physical and technical aspects 
with other neutrino beams 

– Proton driver, target, secondary beam line, detector etc.  

– International collaborations will benefit the community: 
with the ongoing projects LBNF and Hyper-K, and with the 
studies Neutrino Factory, ESSnuSB and nuSTORM 




